Sentiment Analysis

STUDENT C

What is sentiment analysis?

Sentiment Analysis also known as Opinion Mining is a field within Natural

Language Processing (NLP) that builds systems that try to identify and
extract opinions within text.

https://monkeylearn.com/blog/definitive-guide-natural-language-processing/

Use cases for sentiment analysis

< o B

Customer Experience Voice of Customer (VoC) Social Media Monitoring (SMM)
Management (CXM) grow market share, build loyalty grow brand awareness

reduce churn, increase sales

Workforce Analytics & Voice of .
Employee Product Management Enterprise Search

"crazy" good or bad? meet market needs turn words into money

Pros of sentiment analysis

Sentiment analysis works best with large data sets written in the first person, where the nature
of the data invites the author to offer a clear opinion.

» Great for quickly analyzing thousands—or even millions—of pieces of data where topic
categorization is less important than an overall indication of sentiment.

» Can give you a starting point in qualitative data analyis by extracting strongly positive or
negative sentences out of documents.

» Works particularly well with data where the author clearly expresses an opinion (e.g. app
reviews, political views, user feedback).

» Somewhat context-agnostic — it doesn’t matter if the data is about politics, mobile phone
reviews, cooking recipes, or anything.

» Some providers (e.g. Google and Amazon) have support for multiple languages.

Cons of sentiment analysis

> Not a replacement for ML auto-categorization as it will only categorize text based on its
sentiment, not the topic discussed.

» Does not work well on text written in the third person (e.g. user testing observations) or
where the data is not someone’s opinion on a product or service.

» Can struggle with complex sentences involving double negatives, sarcasm, adverbials,
unknown proper nouns and brand names, and greetings (e.g. “Best wishes!” or “Looking
forward to your response” in email signatures).

Tokenization

Sentiment
Class

Sentiment Stop Word

. Filterin
Analysis !
Classification

Negation
Handling

The Importance of Good Preprocessing

Methods are discussed in relation to Sentiment Analysis

Procedures and Methods

> Clean up data

> Break up Contractions

> Make text lower case

> Convert numbers to text

> Look at your data and make decisions
> Lemmatization vs. Stemming

Clean Up Data

> Depending on your data source text data can be very difficult to
parse.

> Examples:
> BeautifulSoup is the most popular package for web page scraping

> Remove Text between square brackets
> re.sub("\[[*]]*\]', ", text)

Break Up Contractions

> By breaking up these contractions the NN can receive more unified
data allowing it to form stronger connections.

> Examples
> Don't -> Do not
o Can't -> cannot

Make Words Lowercase

> Words at the start of sentences are capitalized.

o |If we do not set all words to lowercase, then we may have 2
separate data points for the same word.

> One downside to this is some words mean different things
depending on their capitalization.

> US to abbreviate United States and the word "us" have very different
purposes.

Convert Numbers to Text

A simple technique to maintain consistent data structure.

Python Example Code:

replace numbers(words):
p = inflect.engine()
new_words = []
word words:
word.isdigit():
new_word = p.number_to words(word)
new_words.append(new_word)

new_words.append(word)
new_words

This is a common step that is used to reduce
RemOve the volume of words in the data that do not

Stopwords add value

A list of stop words:

a about after all also always am an and any are at be been being but by came can
cant come could did didnt do does doesnt doing dont else for from get give goes

going had happen has have having how i if ill im in into is isnt it its ive just
keep let like made make many may me mean more most much no not now of only or our
really say see some something take tell than that the their them then there they
thing this to try up us use used uses very want was way we what when where which

who why will with without wont you your youre

008

0.06

004

002

000

Look at Data and Make Decisions

Distnbution of Word Count by Author

0 20 40 @ a0

Word Count

100

One method of view your text data is
observing the word usage frequency.

Examples of Insights:
° |dentify removable words
o |dentify skew in data
° Find common misspellings
° Find combinable data points

° Proper nouns with multiple names

Lemmatization vs Stemming

Stemming is the process of eliminating affixes (suffixed, prefixes,
infixes, circumfixes) from a word in order to obtain a word stem.

running — run

Lemmatization captures canonical forms based on a word's lemma.

better — good

Word Embedding

Word embedding is the collective name for a set of language modeling and feature learning techniques
in NLP where words or phrases from the vocabulary are mapped to vectors of real numbers. It involves a
mathematical embedding from a space with one dimension per word to a continuous vector space with a

much lower dimension. Methods to generate this mapping include neural networks, dimensionality
reduction on the word co-occurrence matrix, probabilistic models, etc.

PC1

1-of-N Encoding Word Embedding original data space
I [1 000 0] ‘ COI’I'IpOﬂBI'ItSpaCG
apple =
dog .
bag =[0 1 0 0 0] —_— ...rabblt T
. ARNE] X
cat =[0 0 1 0 O] @Jjump cat . T o
. : g :
dog =[O0 0 O 1 O] o tree S . SPT
o flower [N in
elephant =[0 O 0 O 1]
Word Class '

o

Class 2

[Source

Word Embedding

* Machine learn the meaning of words from reading + Generating Word Vector is unsupervised

a lot of documents without supervision

Apple Training data is a lot of text

——l

otree
o flower

dog rabbit
arun 9
®

©jump cat

AAL
President Barack Obama gave an inauguration speech
President Donald Trump gave an inauguration speech

Word Embedding

Word2Vec data generation (skip gram) Word2Vec data generation
(window size = 2) (window size = 2)

fHingbeavermar® Lo B e e ke

“queen beautiful woman” king brave (1,0,0,0,0,0) (0,1,0,0,0,0)

king man king (1,0, 0 0,0,0] man [0,0,1,0,0,0]

brave king brave [0,1,0,0,0,0] king (1,0,0,0,0,0]

brave man brave [0,1,0,0,0,0] man [0,0,1,0,0,0]

man king man [0,0,1,0,0,0] king [1,0,0,0,0,0]

man brave man [0,0,1,0,0,0] brave [0,1,0,0,0,0]

queen beautiful queen [0,0,0,1,0,0] beautiful [0,0,0,0,1,0]

queen woman queen [0,0,0,1,0,0] woman [0,0,0,0,0,1]

beautiful queen beautiful [0,0,0,0,1,0] queen [0,0,0,1,0,0]

N beautiful woman beautiful [0,0,0,0,1,0] woman [0,0,0,0,0,1)

woman queen woman [0,0,0,0,0,1) queen [0,0,0,1,0,0]

woman beautiful woman [0,0,0,0,0,1] beautiful [0,0,0,0,1,0]

Word Embedding

Word2Vec training because input is one hot encoding,
hidden layer works as lookup table

(gradient descent)

input hidden (linear neuron) output (softmax) target
e 1 ; ' (R input hidden (linear neuron)
brave | @I\ AR D | . \ : |
- | | Py o unique word | embedding
1 0.7 0 o0—06—0
| - [[king 1,1
N ‘ ‘ ’ [R brave [o, 1, o, 0, 0 ,0] [10 1]'
0 A > W, S 2 02 1 A brave (1,2)
¢ 2 = ‘ Eoesd e T
0 w2 0 0 [5,5),
& P {5, 6}. queen [5, 5]
| [0 5;7
0 ‘ i °] beautiful (5, 6]
G AN i o L4 o
0 ‘ 0 woman [5,7]

cross entropy

Word Embedding

Word2Vec gives similarity in vector
representation

03¢

! Spam \\

03
'Rome

Germany ™—————uo___
- . *Berlin

embedding TUI’kGy \ drawn given
king (1,0,0,0,000 [11] R °f Ankara drav 5 [aiv
6 queen) Russia = — taken
man 0,00,,00 [13] o2} Canada o Ottawa T°SCoW drew e
gave
. Japan ~— s
queen [ol 0,010, 0] [5r 5] 0 man B ; . TOKYO took
O king o4} Vlettjam b — Hanon
woman [0,0,0,001 [57] g sl China ———"""Beijng
08 08 04 02 0 02 04 0s

Comparison of GloVe(Count base) and Word2Vec(Predictive base)
http://clic.cimec.unitn.it/marco/publications/acl2014/baroni-etal-countpredict-acl2014.pdf

http://clic.cimec.unitn.it/marco/publications/acl2014/baroni-etal-countpredict-acl2014.pdf

Model |

1A

L5TM 2

print("fitting LSTM 1 ...")

modell = Sequential()
modell.add(Embedding(dictionary size, 128))
modell.add(LSTM({128, dropout=8.2, recurrent_dropout=0.2))
modell.add(Dense(num_labels, activation='softmax')})

+

modell.compile(loss="categorical crossentropy', optimizer='adam', metrics=['accuracy'])

modell result=modell.fit(word_id train, y_train_enc, nb_epoch=5, batch_size=512, wverbose=1,
halidation_dataz{word_id_test, y_test_enc))

Epoch 1/6

400000/400000 —mMmMmMm8mM™—————————] - 91865 23ms/step - loss: 0.8024 - acc: 0.6717
Epoch 2/6
400008/400000 [——=——=—————-—————————————] - 8991s 22ms/step - loss: 0.6754 - acc: 0.7204
Epoch 3/6
400000/400000 [==—==—memreese—————seeseee———e] - 9074s 23ms/step - loss: 0.6146 - acc: 0.7466
Epoch a/6
400000 /400000 [== === osss=ss=s=sSS=SS=S=====] - 9ess8s 23ms /step - loss: 0.5574 - acc: 0.7731
Epoch S/6
400000/400000 [=============—=————————————ooo 1 - 9071s 23ms/step - loss: 0.4966 - acc: 0.8004
Epoch 6/6
400000/400000 [] - 9079s 23ms/step - loss: 0.4339 - acc: 0.8269
In [9]: score = model.evaluate(word_id_test, y_ test_enc)

...: print('Test loss:*, scorelo])

...: print(*'Test accuracy:*, scorel1])
100000/100000 [============================== 1 - 2365 2ms/step

Test loss: 0.8124536835813523
Test accuracy: 0.7006

Model |l

94 embedding = dict();
95 with open('C:/Users/mtsail/OneDrive for Business/School/Deep Learning/Project 2//glove.BB.1088d.txt"',encoding="utf8") as file:

96 for line in file:

97 values = line.split()}

98 word = values[8]

99 coef = np.asarray(values[1:], dtype='float32")
.Ba embedding[word] = coef

a1

82 embedding m = np.zeros((dictionary size, 108));
82 for word, 1 in dictionary.items():
B84 embedding v = embedding.get(word);

85 if embedding v is not None:
86 embedding m[i] = embedding v;
a7

88 model3 = Sequential();

99 model3.add(Embedding(dictionary size, 1808, weights=[embedding m], trainable=False));
18 model3.add(LSTM(68, return_sequences=True, recurrent_dropout=8.5));

11 model3.add(Dropout(8.5))

12 model3.add(LSTM(&8, recurrent_dropout=8.5));

13 model3.add(Dense(68, activation='relu'));

14 model3.add(Dense(num_labels, activation='softmax'));

15 optimizer = optimizers.Adam(lr=0.01, decay=8.801);

16 model3.compile(loss="binary crossentropy', optimizer=optimizer, metrics=['accuracy'])
17 model3.fit(word _id train, y_train_enc, batch_size = 512, validation split=8.2, epochs=2, verbose=1,
18 validation_data=(word_id test, y test enc))

A9

28 score = model3.evaluate{word id test, y test enc)

21 print('Test loss:', score[@])

22 print('Test accuracy:', score[1])

Model |l

model3 = Sequential();

model3.add(Embedding(dictionary_size, 188, weights=[embedding_m], trainable=False)});

model3.add(LSTM{68, return_sequences=True, recurrent_dropout=8.5));

model3.add({(Dropout{@.5))

model3.add(LSTM({68, recurrent_dropout=8.5));

model3.add({Dense(5@, activation="relu’});

model3.add({Dense{num_labels, actiwvation='softmax'});

optimizer = optimizers.adam(lr=8.81, decay=8.881);

model3.compile(loss="binary crossentropy’', optimizer=optimizer, metrics=["accuracy'])

model3.fit{word_id train, ¥ train_enc, batch_size = 512, walidation_split=8.2, epochs=2, wverbose=1,
validation data=({word_id test, y test enc))

Train on 482888 samples, wvalidate on 128888 samples

Epoch 1/2

4 S L] - B78Bs 1Vms/step - loss: B.4481 - acc: B.8888 - wal_loss: 8.4444 -
val_acc: @.5288

Epoch 2/2

4 S L] - 89297s 1Vms/step - loss: B.4459 - acc: B.8888 - wal_loss: 8.4445 -

val_acc: @.5288
Qut[B61]: <keras.callbacks.History at @xlelec7465c@:

In [62]

score = model3.evaluate(word_id_test, y_test_enc)
print{ 'Test loss:', score[@])

waw: print{‘Test accuracy:’, score[l])
180608,/ 182808 [1 - 123s 1ms/step

Test loss: @.4444551959875928
Test accuracy: @.3gea2e8119228929

Save and Retrain Model

133 #LSTM2

134 model? = Sequential()

135 model2 . add(Embedding(dictionary size, 128))

136 model2.add(LSTM(6@, return_sequences=True, recurrent_dropout=08.5))

137 model2.add(Dropout(8.5))

128 model2 . add(LSTM(68, recurrent_dropout=8.5})

139 model2.add(Dense(num_labels, activation='softmax'))

148 optimizer = optimizers.Adam(lr=0.01, decay=0.801);

141 model? . compile(loss="binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
142

143 Save Model
144 filepath = "C:/Users/mtsail/OneDrive for Business/School/Deep_Learning/Project 2/Sen.models.h5"

145 checkpoint = ModelCheckpoint(filepath, monitor='loss', wverbose=1, save_best _only=True, mode='min')
146 callbacks_list = [checkpoint]

147

148 # fit model

149 model2.fit(word_id_ train, y_train_enc, batch_size = 64, validation_split=0.3, epochs=1, verbose=1,
158 validation_data=(word_id_test, y_test enc), callbacks=callbacks_list])

151

152 score = model2.evaluate(word id test, y_test enc)

153 print('Test loss:', score[@])

154 print('Test accuracy:', score[1])

155

156 # Load the Model

157 new_model = load_model("C:/Users/mtsail/OneDrive for Business/School/Deep_ lLearning/Project 2/Sen.models.h5")

158 #test if two numpy arrays are equal (check if the new model is the right one)

159 assert_allclose(model2.predict(word_id_train),

168 new_model .predict(word_id_train)},

161 le-5)

162 # fit the New Model

163 checkpoint = ModelCheckpoint(filepath, monitor='loss', wverbose=1, save_best_only=True, mode='min')

164 callbacks_list = [checkpoint]

165 new_model . fit(word_id train, y_train_enc, epochs=1, batch_size=64, validation_split=8.3,
166 validation_data=(word_id_test, y_ test enc), callbacks=callbacks_list)}

167

Save and Retrain Model

In [68]:

In [68]: model2.fit{word_id train, y_train_enc, batch_size = 64, validation_split=8.3, epochs=1, verbose=1,
. validation_data=(word_id_test, y_test_enc), callbacks=callbacks_ list)
Train on 488888 samples, validate on le@eed samples

Epoch 1/1
4p0000/ /400808 |] - 6@64s 15ms/step - loss: 8.2624 - acc: 8.8838 - val loss: ©.2458 - val acc: @.8897

Epoch @eeel: loss improved from inf to ©.26248, saving model to C:/Users/mtsail/OneDrive for Business/Scheool/Deep Learning/Project 2/

Sen.models. hS
Out[68]: <keras.callbacks.History at @xlelb738ed3e:

In [72]:

In [72]: checkpoint = ModelCheckpoint({filepath, monitor='loss', werbose=1l, save best only=True, mode="min')
...t callbacks list = [checkpoint]
wot new_model.fit({word_id_train, y_train_enc, epochs=1, batch_size=64, wvalidation_split=8.3,
validation data=(word id test, y test enc), callbacks=callbacks list)

Train on 488888 samples, validate on 188888 samples

Epoch 1/1
B32/4BBBBE [...iissasssasasaasaasssnnaasansnnns] - ETA: 2:12:55 - loss: ©.,2577 - acc: B.8868

