Histopathologic Cancer Detection

DSCI 419 FINAL PROJECT

STUDENT A

2018

Agenda

Project Overview

Method

- Issues with Deep Network
- Residual Neural Network (ResNet)
- Densely Connected Neural Network (DenseNet)
- Transfer Learning

Modeling and Results

- Baseline
- ResNet50
- DenseNet 121

Conclusion

Histopathologic Cancer Detection

Objective

• To identify metastatic cancer in small image patches taken from larger digital pathology scans.

Input Data

- Slightly modified version of the PatchCamelyon (PCam) benchmark dataset
- 96 * 96 RGB image
- Around 220,000 images (130, 000 no-tumor and 90,000 tumor)

Method

- Binary classification using CNN
 - Residual Neural Network (ResNet)
 - Densely Connected Network (DenseNet)

Model Evaluation

Validation Accuracy

Method

Issues with Deep Neural Networks

- Vanishing/Exploding gradients
 - Normal initialization
 - Intermediate normalization layer Batch Normalization
 - Accelerate training of deep networks
- Training accuracy degradation
 - Reality is different from theory.
 - With depth increasing, training accuracy gets saturated and then degrades rapidly.
 - Deep layers lose representation of previous layers.
 - Solutions: Residual Neural Network and Densely Connected Network

Residual Neural Network (ResNet)

- Advanced CNN architecture
- Developed by Kaiming He, et al. (2015)
- Residual learning block
 - Add residual connection
- Improvement
 - Residual representation
 - Simplify optimization
 - Shortcut connection

ResNet50

- 50 layers with trainable parameters
- 1 by 1 Conv Layer Bottleneck layer
 - Deeper architecture
 - Reduce the size of parameters

- Keras Implementation
 - keras.applications.resnet50.ResNet50

]		
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112			7×7, 64, stride 2			
				3×3 max pool, stride 2			
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c} 3 \times 3, 512 \\ 3 \times 3, 512 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	
	1×1	a <mark>v</mark> erage pool, 1000-d fc, s <mark>o</mark> ftmax					
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹	
					J		

Densely Connected Network (DenseNet)

- Advanced CNN Architecture
- Create short paths from early layers to later layers
 - Feature reuse easy to train and highly parameter efficient
- Address vanish or "wash out" issues, as CNNs become increasingly deep
- Layers are very narrow (e.g., 12 filters per layer)
- Final classifier makes decision based on all feature-maps in the network.

DenseNet121

- 121 layers with trainable parameters
- 1 by 1 Conv Layer Bottleneck layer
 - Deeper architecture
 - Reduce the size of parameters
- Keras Implementation
 - keras.applications.densenet.DenseNet121

			1			
Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264	
Convolution 112×112			7×7 conv, stride 2			
Pooling	56 × 56		3 × 3 max p	oool, stride 2		
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	
Transition Layer	56 × 56	1 × 1 conv				
(1)	28×28		2 × 2 average	pool, stride 2		
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	
Transition Layer	28×28	1 × 1 conv				
(2)	14×14		2 × 2 average	pool, stride 2		
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 64 \end{bmatrix}$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	
Transition Layer	14×14		1 × 1	conv		
(3)	7 × 7	2×2 average pool, stride 2				
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$	
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 10$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	
Classification	1×1		7 × 7 global	average pool		
Layer			1000D fully-connected, softmax			
		•	,			

Transfer Learning

- To improve learning in the target task by leveraging knowledge from the source task
- Popular in computer vision and natural language processing
 - GloVe, Word2vec
 - DenseNet, ResNet, VGG, etc.
- Method
 - Freeze entire model and only train the classification part (Small training set)

Freeze / Untrainable

Transfer Learning

- To improve learning in the target task by leveraging knowledge from the source task
- Popular in computer vision and natural language processing
 - GloVe, Word2vec
 - DenseNet, ResNet, VGG, etc.
- Method
 - Freeze entire model and only train the classification part (Small training set)
 - Freeze most layers of the model and train change the classification part (Medium training set)

Transfer Learning

- To improve learning in the target task by leveraging knowledge from the source task
- Popular in computer vision and natural language processing
 - GloVe, Word2vec
 - DenseNet, ResNet, VGG, etc.
- Method
 - Freeze entire model and only train the classification part (Small training set)
 - Freeze most layers of the model and train change the classification part (Medium training set)
 - Train entire model (Large training set)

Trainable

Modeling

Data Preprocessing

- Remove invalid images
 - 'dd6dfed324f9fcb6f93f46f32fc800f2ec196be2'
 - '9369c7278ec8bcc6c880d99194de09fc2bd4efbe'
- Data augmentation
 - Keras image preprocessing ImageDataGenerator class
- Balance training dataset
 - Tumor: 80,000
 - No-Tumor: 80,000

Environment

Kaggle Kernel with GPU

Modeling – Baseline

Base CNN Model

- 14 layers with trainable parameters
- Batch normalization after each Conv2D layer
- Training Setup
 - Training steps: 4,500
 - Validation steps: 500
 - 20 Epochs with early stopping
- 5.01 Million Parameters

Total params: 5,008,129

Trainable params: 5,006,785

Non-trainable params: 1,344

Results - Baseline

Base CNN Model

- Validation Accuracy: 98.30%
- Run Time: 368s per epoch (around 6 minutes)

Modeling – ResNet50

ResNet50

- 50 + 3 layers with trainable parameters
- Batch normalization
- Training Setup
 - Training steps: 4,500
 - Validation steps: 500
 - 10 Epochs with early stopping
- 23.59 Million Parameters

Total params: 23,587,712

Trainable params: 23,534,592 Non-trainable params: 53,120

Results – ResNet50

ResNet50

- Validation Accuracy: 98.06%
- Run Time: 1738s per epoch (around 29 minutes)

Modeling – DenseNet121

DenseNet121

- 121 + 3 layers with trainable parameters
- Batch normalization
- Training Setup
 - Training steps: 4,500
 - Validation steps: 500
 - 10 Epochs with early stopping
- 9.40 Million Parameters

Total params: 9,398,081

Trainable params: 9,313,921 Non-trainable params: 84,160

DenseNet121

DenseNet121

- Validation Accuracy: 98.08%
- Run Time: 1512s per epoch (around 25 minutes)

Results - Summary

Model	# of Layers	Run Time (/epoch)	Parameter Size	Validation Accuracy
Base CNN	14	368s	5.01M	98.30%
ResNet50	53	1738s	23.59M	98.06%
DenseNet121	124	1512s	9.40M	98.08%

Conclusion

Application of Image Classification

Cancer detection

Advanced CNN Architecture

- Residual Neural Network
 - ResNet50
- Densely Connected Network
 - Dense121
- 1 by 1 Convolutional Neural Network
 - Bottleneck layer
 - Reduce the size of parameters
 - Commonly used in complex CNN architecture

Transfer Learning

"Standing on the shoulders of giants."

Dense Block

Reference

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. *arXiv preprint arXiv:1502.03167*.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017, July). Densely connected convolutional networks. In *CVPR* (Vol. 1, No. 2, p. 3).

Convolutional Neural Networks by deeplearning.ai.

https://www.coursera.org/learn/convolutional-neural-networks/home/welcome